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Abstract—The main aim of data mining is to pull out knowledge 
from an existing dataset and transform it into a flexible structure. 
Association rule mining is one of the most important tasks of data 
mining intended towards decision support. It is the process of finding 
some relations among the attribute values of a huge database. 
Evolutionary algorithm has found its strong base in mining 
Association Rules. Many real life data mining problems involve 
multiple conflicting measures of performance, or objectives, which 
need to be optimized simultaneously. Under this context, multi 
objective evolutionary algorithms are gradually finding more and 
more applications in the domain of data mining since the beginning 
of the last decade. Many researchers have proposed multi-objective 
evolutionary algorithms for mining interesting rules from dataset. 
This paper provides the major advancements in the approaches for 
association rule mining using evolutionary algorithms. 

1. INTRODUCTION 

In recent years, data mining has attracted a great deal of 
attention in the information industry due to the wide 
availability of huge amounts of data and the imminent need of 
extracting useful information and knowledge from those. The 
process of discovering interesting and unexpected rules from 
large data sets is known as association rule mining. These 
rules are the relationships that are found between items of a 
database. An association rule is an implication or if-then-rule 
which is supported by data. Mining of association rules is a 
field of data mining that has received a lot of attention in 
recent years [6]. Mining of numeric association rules can be 
characterized by the presence of more than one objective 
which is conflicting in nature. These objectives may be high 
support and confidence values, interestingness, 
comprehensibility, narrow intervals for numeric attributes. 
That is why this problem is a multi objective optimization 
problem. [4] 

Most of the association rule algorithms are based on methods 
proposed by Agrawal, Imielinski, and Swami [1] and Agrawal 
and Srikant [2], Apriori [1], SETM [1], AIS [1] etc.[7]. 
However, these algorithms have their limitations. Multi-
objective Evolutionary algorithm is used in mining association 
rule to remove some of the limitations of the existing 
approaches [3]. MOEA is relatively simple, easy to implement 

and easy to use. Furthermore, it follows a database-
independent approach which does not rely upon the minimum 
support and the minimum confidence thresholds which are 
hard to determine for each database. [4] 

The rest of this paper is organized as follows. In Section 2 an 
overview of Association rule mining (ARM) is provided. 
Section 3 discusses the multi-objective nature of association 
rules mining problems. Section 4 gives an overview of 
Multiobjective evolutionary algorithms (MOEAs). Section 5 
covers a comparative study of different MOEAs for ARM. 
Finally, Section 6 includes the future scope and conclusion. 

2. ASSOCIATION RULE MINING (ARM). 

Principle of association rule mining (ARM) lies in the market 
basket or transaction data analysis. The major aim of ARM is 
to find the set of all subsets of items or attributes that 
frequently occur in many database records or transactions, and 
additionally, to extract rules on how a subset of items 
influences the presence of another subset. ARM algorithms 
discover high-level prediction rules in the form: IF the 
condition of the values of the predicting attributes are true, 
THEN predict values for some goal attributes. The task of 
mining association rules over market basket data was first 
introduced by Agrawal et al. [1]. 

Let I= {݅ଵ,݅ଶ,݅ଷ ..., ݅௠} be the set of database items and T={ 

 ,௠} be the set of transactions in the database, Dݐ,... ,ଶݐ ,ଵݐ
with each transaction ݐ௜ having a unique identifier and 
containing a set of items, called an itemset. An association 
rule is a conditional implication among itemsets, X→Y, where 

X and Y are itemsets and X ∩ Y = ∅. An itemset can be a 
single item or a set of items. An itemset with k items is called 
a k-itemset. A subset of k elements is called a k-subset.  

An association rule (AR) is called frequent if its support 
exceeds a minimum value min sup. The confidence of a rule X 
⇒ Y in T denotes the percentage of the transactions in T 
containing X that also contains Y. It is taken to be the 
conditional probability P(X|Y).  
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That is, confidence(X ⇒ Y, T) = 
௦௨௣௣௢௥௧ሺ௑∪	௒,்ሻ

௦௨௣௣௢௥௧ሺ௑,்ሻ
    

A rule is called confident if its confidence value exceeds a 
threshold min_conf. . The ARM problem can be defined as 
follows. Find the set of all rules R of the formX ⇒ Y such that 

R = {X ⇒ Y|X, Y ⊂ I, X Y = ∅,X ∪Y ⊆ ݂(T, min sup),  

confidence(X ⇒ Y, T) > min conf}.  

Generally, the ARM process consists of the following two 
steps 
1) Find all frequent itemsets. 
2) Generate strong ARs from the frequent itemsets. 
The number of itemsets grows exponentially with the number 
of items |I|. A commonly used algorithm for generating 
frequent itemsets is the apriori algorithm.[9,7,6] 

3. MULTI-OBJECTIVE OPTIMIZATION AND RULE 
MINING PROBLEMS. 

Most of the data mining problems can be thought of as 
optimization problems, where the aim is to evolve a candidate 
model that optimizes certain performance 
criteria. However, the majority of data mining problems have 
multiple criteria to be optimized. A rule mining problem may 
optimize several rule objectives such as support count, 
confidence, comprehensibility, interestingness, J-measure, 
entropy and lift at the same time. Hence, association rule 
mining problems are multi-objective in nature. Therefore, it is 
natural to pose rule mining problems as multiobjective ones. 
For this reason, over the past decade, several researchers have 
applied Multi Objective Evolutionary Algorithms (MOEA) for 
different data mining problems. An MOEA provides a set of 
nondominated solutions, which the user can compare (it is 
important to keep in mind that the set of nondominated 
solutions represents the best possible tradeoffs among the 
objectives). Then, a single solution from this set can be 
chosen, based on the user’s preferences. In the problem of 
association rule mining, all the nondominated solutions, 
representing rules are considered the final solution set. Due to 
the above reasons, MOEAs have been popularly used for data 
mining problems. In this paper, a number of different MOEAs 
techniques applied to ARM mainly focusing on encoding 
techniques, objective functions, evolutionary operators, and 
final solution selection strategies.[5,8] 

4. MULTIOBJECTIVE EVOLUTIONARY 
ALGORITHMS (MOEAS). 

MOEAs have evolved over several years. First generation 
MOEAs were traditional aggregating approaches, Pareto-
based approaches came after that and more recently indicator-
based algorithms are gaining popularity.  

In the aggregating approaches, multiple objective functions 
are combined into a single scalar value using weights, and the 
resulting single-objective function is then optimized using 

conventional evolutionary algorithms. In population based 
non-Pareto approaches such as the vector evaluated genetic 
algorithm, a special selection operator is used and a number of 
subpopulations are generated by applying proportional 
selection based on each objective function in turn. Among the 
Pareto-based approaches, multiple objective GA, niched 
Pareto GA (NPGA), and nondominated sorting GA (NSGA) 
are the most representative nonelitist MOEAs. In the late 
1990s, a number of elitist models of Pareto-based 
multiobjective evolutionary algorithms were proposed. The 
most representative elitist MOEAs include strength Pareto 
evolutionary algorithm (SPEA) and SPEA2, Pareto archived 
evolutionary strategy (PAES), Pareto envelope-based selection 
algorithm (PESA)and PESA-II, and nondominated sorting 
genetic algorithm-II (NSGA-II). Most of the recent 
applications of MOEAs for data mining problems have used 
one of these Pareto-based elitist approaches as their 
underlying optimization strategy. The indicator-based 
evolutionary algorithm is intended to be adapted to the user’s 
preferences by formalizing such preferences in terms of 
continuous generalizations of the dominance relation. [8] 

5. MULTIOBJECTIVE EVOLUTIONARY 
ALGORITHMS FOR ARM. 

Here, MOEAs used for association rule mining are surveyed. 
We review many of these approaches with a focus on 
chromosome representation, objective functions, evolutionary 
operators, and methods for obtaining the final solution from 
the non-dominated set. Figure. 1 shows the different MOEAs-
based ARM along with the corresponding references. 

 

Fig. 1: MOEAs for association rule mining. 

In the past decade, several MOEAs have been proposed for 
ARM. These techniques can broadly be classified into three 
categories, namely categorical association rules, numeric 
association rules, and fuzzy association rules.[9] 
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5.1 Categorical Association Rules.  

Categorical association rules are generated from a binary or 
categorical dataset. In a binary dataset, a rule like ABC ⇒ DE 
can be interpreted as follows: if items A, B, and C are 
purchased, then items D and E are also purchased. Thus, these 
rules do not say anything about the number of items that are to 
be purchased; they simply imply the presence or absence of 
items. For categorical data, if some item has multiple 
categorical values, then each attribute-value pair is treated as a 
separate item. In this way the dataset is converted into a binary 
dataset.[9] 

5.1.1 Underlying MOEAs. 

Different standard and nonstandard MOEAs have been used in 
various works on categorical ARM. We call a MOEA non-
standard if it does not follow any of the standard MOEA 
approaches directly, but uses instead some combination of 
operators. In [3], a multiobjective GA (MOGA) is used. In 
[10] and [7], some non-standard MOEAs are used for the 
ARM problem.[9] 

5.1.2 Chromosome Representation. 

There are mainly two chromosome representation techniques 
for categorical ARM. In the first approach (Pittsburgh 
approach), a set of possible association rules are encoded in 
each chromosome. This approach is more suitable for 
classification rule mining, where the objective is to identify a 
good set of rules. However, in ARM, the objective is to find a 
set of rules each of which is good. Therefore, for this case, the 
Michigan approach, in which each chromosome represents 
exactly one rule, is more suitable [3]. Most of the MOEA-
based categorical ARM techniques use this chromosome 
representation. In an early work [3], the authors adopted the 
Michigan approach as follows: each chromosome has length 
2k, where k is the number of items. The chromosomes are 
binary strings where each attribute is given two bits. If these 
two bits are 00 or 11, then the attribute appears in the 
antecedent or consequent parts of the rule, respectively; 
otherwise, the attribute is absent from the rule. In a similar 
approach, the presence of an attribute in the antecedent and 
consequent part are represented by bits 10 and 01, whereas 
other bit combinations represent the absence of the attribute 
from the rule. The above encoding schemes [3] can only be 
adopted for binary datasets, that is, when an item is either 
present or absent in a transaction. If someone wants to use this 
encoding for more general categorical data, where an item 
may be present in a transaction with certain value (a 
categorical state), the dataset will first need to be transformed 
into a binary one by considering each attribute-value pair as an 
item. The main disadvantage of using a binary encoding 
scheme is that it gives rise to a large chromosome length when 
the number of attributes is large, since at least two bits are 
needed for each attribute. An integer encoding may come 
handy in this respect. Such an integer encoding scheme has 
been proposed in association rule mining using multiobjective 

genetic algorithm (ARMMGA) [7], where the chromosomes 
encode the index of the attributes. A chromosome encoding a 
k-rule, k being the total number of items in the antecedent and 
the consequent, has k + 1 genes. The first gene position 
indicates the separating position of the chromosome where the 
antecedent and the consequent attributes are separated. For 
example, if Ai represents the ith item, then the chromosome {3 
| 2 5 4 1 3} represents the rule A2A5A4 ⇒ A1A3. This 
representation significantly reduces the length of the 
chromosome, but not effectively the search space, because 
now for each position, a large number of alternative indices 
are to be searched. Moreover, this representation scheme gives 
rise to a variable chromosome length, thus requiring a 
specialized crossover operator. Also, there remains a 
possibility of finding duplicate indices in a chromosome after 
crossover/mutation, which must be taken care of during the 
evolutionary process.[9] 

5.1.3 Objective Functions. 

Although support and confidence are two popular objectives 
that are to be maximized, there are several other metrics to 
measure the interestingness of association rules. These 
metrics, which have been used by different algorithms for 
optimization in a multiobjective framework, include coverage, 
lift, comprehensibility, cosine, prevalence, recall, Laplace, 
conviction, surprise, Jaccard, J-measure, and so on. In [3], the 
rule mining problem has been modeled as a three-objective 
optimization problem where confidence, comprehensibility, 
and interestingness have been optimized simultaneously. They 
defined the comprehensibility of a rule as log(1 + |C|)/log(1 + 
|A ∪ C|), where |C| and |A ∪ C| denote the number of attributes 
in the consequent part and total rule, respectively. They 
considered that the lower value of comprehensibility, that is, 
less number of attributes in the consequent of the rule, leads to 
better understandability of the rule. The interestingness 
measure, on the other hand, is defined as a product of three 
probabilities, namely, the probability of generating the rule 
given the antecedent (ratio of the support of the rule to the 
support of the antecedent), the probability of generating the 
rule given the consequent (ratio of the support of the rule to 
the support of the consequent), and the probability of 
generating the rule given both antecedent and consequent 
(ratio of the support of the rule to the total number of 
transactions). A rule becomes more interesting if it has a high 
interestingness value. In [10], five objective functions, that is, 
support, confidence, J-measure, interest, and surprise have 
been simultaneously optimized. They found five different 
groups of correlated measures. To make the objective 
functions contradictory and uncorrelated, they selected these 
five measures from five different groups. In [7], the classical 
measures (support and confidence of the rules) are 
simultaneously optimized. Thus, it is apparent from the above 
discussion that different sets of rule-interestingness measures 
have been chosen by various authors as their objective 
functions. [9] 
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5.1.4 Evolutionary Operators.  

When binary encoding has been adopted, standard crossover 
and mutation operators have been used. For example, in [3], 
multipoint crossover and bit-flip mutation have been used. In 
[10], although the authors did not explain the encoding 
strategy explicitly, from the description of the evolutionary 
operators, it appears that they used an approach in which the 
categorical values of the attributes participating in the rule are 
encoded. Here, the authors used value exchange and insertion 
crossover operators. If two parents have some common 
attributes in the antecedent part, then a value exchange 
crossover is performed by exchanging the categorical values 
of one of the common attributes. When the parents do not 
have any common attribute, then one random attribute selected 
from one parent is inserted into the other with a probability 
that is inversely proportional to the length of the latter 
chromosome. Four mutation operators are applied with equal 
probabilities. A value mutation randomly replaces a chosen 
categorical value with another random value from the same 
domain. An attribute mutation randomly replaces an attribute 
with another one. An insertion mutation inserts a new 
attribute-value pair, and a deletion mutation deletes a 
randomly chosen attribute-value pair. In [7], where integer 
encoding of the attributes is used, an order-1 crossover 
strategy is adopted. In this strategy, first a segment is chosen 
from two parent chromosomes and these are copied to the two 
offspring. Then, starting from the right side of the segment, 
the values of the genes that do not exist in the selected 
segment of the first parent, are copied to the first offspring. 
The same procedure is repeated for the second offspring as 
well. The mutation operator replaces a chosen item from the 
chromosome with a random item not present in the 
chromosome.[9] 

5.1.5 Obtaining the Final Solution. 

All the works for categorical rule mining using MOEAs that 
have been discussed in this paper use a Michigan type of 
encoding, where each chromosome encodes one association 
rule. Hence, the final generation produces a set of non-
dominated solutions each of which are given to the user as the 
association rules generated from the input dataset. Thus, in 
this case, there is no specific need of selecting a single 
solution from the non-dominated front.[9] 

5.2 Numeric Association Rules. 

For datasets having continuous attribute domains, the ARM 
algorithms designed for categorical attributes do not work 
well. This is because such algorithms need categorization of 
the continuous attributes. Hence, the results of the ARM 
algorithms depend a lot on the categorization technique 
adopted. To overcome this limitation, many 
numeric/quantitative ARM algorithms have been proposed 
and some of them adopted a multiobjective optimization 
approach. A quantitative association rule is represented as [4], 
[11] 

(l1 ≤ A1 ≤ h1) ∧ (l2 ≤ A2 ≤ h2) ⇒ (l3 ≤ A3 ≤ h3). 
Here Ai represents the ith attribute. li and hi represent the 
lower and upper bound of the attribute values, respectively. 
Thus, [li, hi] defines an interval of values for the attribute Ai. 
Here, we discuss two different works on quantitative ARM.[9] 

5.2.1 Underlying MOEAs. 

In this section, we review a two EAs. First one is 
multiobjective differential evolution based numeric 
association rule mining algorithm (MODENAR) [4].  

TABLE I: Comparison of Different MOEAs for  
Association Rule Mining. 

Algori
thm 

MOO 
tool 

Type Encoding Objective 
Functions 

Evolutionar
y 

operator 
Kaya 
& 
Alhajj, 
2003[1
2] 

SPEA 
Variant

Fuzzy Real Valued 
(membership 
functions) 

Number of 
large 
itemsets, 
time taken 
to find all 
large 
itemsets 

Multi point 
crossover, 
standard real 
value 
mutation 

Ghosh 
& 
Nath, 
2004[3
] 

MOGA Catego
rical 

Michigan 
approach 

confidence, 
comprehens
ibility and 
interestingn
ess values 

multi-point 
crossover and 
mutation 

Alatas 
et. 
al2007
[4] 

MODE
NAR 

Numer
ic 

Mixed(Integ
er+real), 
Michigan 

Support, 
Confidence, 
Comprehen
sibility, 
amplitude 
of interval 

Multiobjectiv
e DE, 
rounding , 
repairing and 
filtrating 
operator 

 
Khabz
aoui, 
et al, 
2008[1
0] 

Enumer
ative 
Proced
ure 

Catego
rical 

Not 
mentioned 

Support, 
Confidence, 
Jmeasure, 
Interest and 
Surprise 

Value 
Exchange 
crossover, 
insertion 
crossover,val
ue/attribute 
mutation, 
insertion/dele
tion mutation

Qodm
anan et 
all, 
2011[7
] 

ARMM
GA 

Catego
rical 

Integer(Mich
igan) 

Support, 
confidence 

Order, 
crossover,, 
random 
replacement 
mutation 

Mathe
ws et 
al, 
2011[1
3] 

NSGA-
II 

Fuzzy Mixed(Integ
er+real), 
Michigan 

Temporal 
support, 
temporal 
confidence,
Fuzzy 
support, 
membershi
p function 
width 

Modified 
uniform 
crossover, 
random 
change 
mutation 
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Tronco
so et 
al, 
2015[1
1] 

MOQA
R 

Numer
ic 

Mixed(Integ
er+real), 
Michigan 

Support of 
the rule, 
support of 
the 
antecedent, 
support of 
the 
consequent, 
confidence, 
leverage, 
accuracy, 
lift, gain, 
certainty 
factor, 
amplitude 
and finally, 
number of 
attributes of 
the rule 

Crossover, 
mutation 

 
In this case, a multiobjective differential evolution (MODE) 
algorithm is used as the underlying optimization framework. 
In another work, an NSGA-II-based quantitative association 
rule mining algorithm (MOQAR) is proposed [11]. [9] 

5.2.2 Chromosome Representation.  

The chromosomes representing numeric or quantitative 
association rules need to encode the lower and upper bounds 
of the intervals of the attributes participating in a rule. In [4], 
where the MODENAR algorithm has been proposed, the 
following encoding technique has been adopted for the 
chromosomes. They used chromosomes where each attribute 
has three components. The first component indicates whether 
the attribute is present or absent in the rule, and if present, in 
which part (antecedent or consequent) in the rule it is. The 
second and third components indicate the lower and upper 
bounds of the ranges of the attribute. The first component can 
have integer values 0, 1, or 2, which indicate the presence of 
the attribute in the antecedent of the rule, the presence of the 
attribute in the consequent of the rule, and the absence of the 
attribute from the rule, respectively. The second and third 
components can take real values from the corresponding 
attribute ranges. It is to be noted that as MODENAR uses 
differential evolution as an optimizer and works on real-
valued chromosomes, the authors used a round-off operator to 
handle the integer part of the chromosome. A similar encoding 
scheme is adopted in MOQAR. [9] 

5.2.3 Objective Functions. 

MODENAR optimizes four criteria of the rules [4]: support, 
confidence, comprehensibility, and amplitude of the intervals 
that make up the itemset and the rule. Comprehensibility is 
used to bias the search process toward shorter rules, under the 
assumption that shorter rules provide more non-redundant 
information. They also proposed that the amplitude of the 
intervals must be smaller for interesting rules, but the rationale 
for this is not explained. In MOQAR [11], these objective 

functions are simultaneously optimized: Support of the rule, 
support of the antecedent, support of the consequent, 
confidence, leverage, accuracy, lift, gain, certainty factor, 
amplitude and finally, number of attributes of the rule. [9]  

5.2.4 Evolutionary Operators. 

MODENAR [4] used the standard version of the crossover and 
mutation operators adopted by the version of differential 
evolution called DE/rand/1. Additionally, a rounding operator 
is used to roundoff the first part of the attribute that requires 
an integer (0,1,2) for computing the objective function values.  

In both [4] and [11], during mutation/crossover, it may happen 
that the lower bound becomes larger than the upper bound, or 
they go outside the bounds. For this, some repairing operators 
are also adopted to make the chromosome a valid one. [9] 

5.2.5 Obtaining Final Solution. 

Both MODENAR and MOQAR use a Michigan approach of 
rule mining by encoding one rule in one chromosome. Thus, 
the final nondominated set gives a set of numeric rules. Thus, 
there is no need to select any particular solution from the final 
nondominated set. All the solutions will serve as the final 
selected rule set. [9] 

5.3 Fuzzy Association Rules. 

One of the major problems of mining numeric association 
rules is that these algorithms deal with sharp boundaries 
between consecutive intervals. Thus, they cannot represent 
smooth changes from one interval to another, which can be 
easily handled by fuzzy association rules. A number of 
MOEA-based fuzzy ARM techniques have been developed in 
the past decade. Here, we describe several of these algorithms 
and discuss different approaches that incorporate them. The 
general form of a fuzzy association rule is as [12] 
If X = {x1, x2, . . . , xp} is A = {f1, f2, . . . , fp} 
Then Y = {y1, y2, . . . , yq} is B = {g1, g2, . . . , gq}. 

Here X and Y represent two sets of attributes, and X∩ Y = φ. A 
and B represent the fuzzy sets (linguistic values) of the 
corresponding attributes in X and Y, respectively. Therefore, if 
a rule is encoded in a chromosome, both the attributes and 
their linguistic values should be encoded in it. A number of 
studies have been done on the application of MOEAs for 
fuzzy association rule mining. [9] 

5.3.1 Underlying MOEAs. 

Different MOEAs have been employed in various works on 
fuzzy ARM. Kaya et al. [12] used a variant of SPEA for fuzzy 
rule mining. Mathews et al, [13] used a NSGA-II. [9] 

5.3.2 Chromosome Representation. 

There are two categories of chromosome representations for 
fuzzy ARM. In the first approach, a chromosome represents a 
set of fuzzy clusters corresponding to each attribute. The 
objective is to find a suitable set of fuzzy clusters that partition 
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the range of values in each attribute domain. This approach is 
adopted in a series of works done by Kaya et al. in [12]. In 
these works, each chromosome represents the base values of a 
variable number of membership functions representing the 
fuzzy sets for each quantitative attribute. Standard triangular 
membership functions are used to represent the fuzzy sets. 
Real-valued representation of the chromosomes is used for 
this purpose. Here, a chromosome does not represent 
association rules. It represents a suitable fuzzy clustering of 
the attribute domains. The evolved fuzzy membership 
functions are then used as the linguistic values of the 
corresponding attributes. Fuzzy association rules are mined 
using standard algorithms based on minimum support and 
minimum confidence criteria. [9] 

5.3.3 Objective Functions. 

In the works of Kaya et al. [12], the authors optimize two 
criteria, that is, number of large itemsets and time spent to 
obtain the large itemsets. Thus, here the objective is to evolve 
a possible fuzzy clustering of the numeric attributes that 
maximizes the number of large itemsets while minimizing the 
time required to obtain all large itemsets given the clustering. 
After optimizing the clustering, the authors then use the 
membership functions as the linguistic values for the fuzzy 
association rules extracted based on minimum support and 
minimum confidence criteria. [9] 

5.3.4 Evolutionary Operators. 

[12] have used standard multipoint crossover operations. The 
mutation operator is used to slightly change the center of the 
fuzzy set being mutated. It is to be noted that when mutation 
takes place at the center of a fuzzy membership function, it 
may disrupt the order of the resulting fuzzy membership 
functions. Hence, these fuzzy membership functions need 
rearrangement according to their center values after the 
mutation. [9]  

5.3.5 Obtaining the Final Solution. 
As in [12], a chromosome encodes a possible fuzzy clustering 
of the attribute values. It is necessary to select a suitable 
solution from the final non-dominated set, based on which of 
the final association rules are extracted. In [13], the authors 
used a Michigan type of encoding of temporal fuzzy 
association rules. Therefore, all the rules encoded in the final 
non-dominated set are considered as extracted rules. There is 
no specific need of choosing any particular solution from the 
non-dominated set. [9] 

6. FUTURE SCOPE AND CONCLUSION. 
MOEAs are being applied in association rule mining tasks 
over the past decade, still some important future research 
issues are there. A systematic comparison to guide new users 
in choosing most suitable method for his/her application 
would be valuable as it is still missing in the literature. 
Computational efficiency of MOEAs used in association rule 
mining is another promising research area.  

In this paper, we surveyed several MOEAs used 
for association rule mining. Importance has been given on the 
chromosome representation, objective functions, evolutionary 
operators, and final solution selection. Moreover, a 
comparison among different methods in each category is 
provided. [9] 
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